Production of Haploid & Use of Doubled Haploids in Wheat Breeding

Jianli Chen

Stages in plant life cycle where haploid can occur or be induced

What is Haploid and Doubled Haploid?

- Haploid: an individuals with the gametic chromosome number in its somatic cells
 - polyhaploid: wheat n = 3x = 21; durum n = 2x = 14
 - monohaploid: barley = 1x = 7
- Doubled Haploid: an individual with the doubled chromosome number of the haploid
- Haploid vs monosomic; doubled haploid vs diploid vs disomic?

Breeding Using Doubled Haploid System

Conventional Breeding System

Backcrossing or Pyramiding

• Parent aabb x AABB • F₁ aabb x AaBb (50%) • BC₁F₁ aabb x AaBb (75%) Aabb aaBb aabb \bullet BC₂F₁ aabb x AaBb (87.5%) Aabb aaBb aabb BC₃F₁ aabb x AaBb (93.75) Aabb aaBb aabb • BC₃F₂ 1/16 AABB (6.25) DH: AABB (25%) • BC₃F₃ **AABB** (6.25) **AABB** (25%)

Breeding Using Wheat x Maize Hybridization VA01W476

1998 Roane x W14

1999 F1, doubled haploid production

2000 Head row (35 rows)

2001 Observation test (VA01W-476)

2002 Scab regional uniform test

2003 Preliminary test

Advantages of Doubled Haploid Techniques

- Based on gamete selection
- Develop immediate homozygosity, shorten the time to cultivar release
- Provide greater efficiency of selection in plant breeding
- Improve the precision of genetic and mapping studies
- Accelerate gene pyramiding
- Improve efficacy and efficiency in screening for resistance

Application of Doubled Haploid Variety Improvement

- 100% homozygosity of doubled haploid
 - Elimination of dominance variation
 - Much less progeny needed
 - for two desired genes, using DH, you need only grow 4 DH lines instead of growing 16 plants when selfing to obtain desired genotype.
 - for four desired genes, using DH, you need only grow 16 (2ⁿ) DH lines instead of growing 256 (4ⁿ) plants when selfing.
 - Reduction of 3-5 years for cultivar release

Application of Doubled Haploid Genetic Study

- No risk of herterozygosity
- Quantitative gene inheritance
- Estimation of additive & additive x additive variances

Application of Doubled Haploid Mapping Study

- Permanent population
- no risk of herterozygosity
- can be repeated anytime
- can be used in different Lab
- can be used by different researchers
- data can be accumulated

Methodologies for inducing haploid

- Anther Culture (microspore culture)
- Wide-hybridization mediated chromosome elimination
 - Barley x H.Bulbosum
 - Wheat x Maize hybridization

Anther Culture

- Conventional method
- Some success in releasing new cultivars
- Very much genotype dependent

Barley x H. Bulbosum

- Conventional method
- Good haploid production method for barley
- Restricted to Kr₁ Kr₂ genotypes

Wheat x Maize Hybridization

- An alternative to anther culture and the *H. bulbosum* system in wheat
- First reported by Laurie and Bennett (1986)
- Less genotype-dependent response
- Higher efficacy (Kisana et al., 1993)
 - 2-3 times greater than anther culture
 - Save 4-6 weeks in obtaining the same age haploid green plants
- Less Variation (Kisana et al., 1993)
 - Fewer aneuploids or chromosomal abnormalities
 - Fewer spontaneous regeneration

Procedures of Wheat x Maize Hybridization

- Emasculation
- Pollination
- 2,4 D treatment
- Embryo culture
- Colchicine treatment
- Doubled haploid production

Emasculation

- Cut the glume tips a little
- Reduce damage to glume and stigmas as much as possible.

Pollination

- Fresh pollen
- Pollinate 1-2 days after emasculation

2,4 - D Treatment

- Concentration: 100 mM
- Timing: 24-36 hrs after pollination
- Method: merge entire head into 2,4 D solution

Embryo Culture

- Excise embryos from developing seeds 12 -16 days after pollination and place them on Gamborg's B5 or MS basal medium
- Treat rescued embryos for 5 days at 4-8°C in dark
- Grow above embryos at 20 25°C, 12 hrs of fluorescent light (1-2 weeks)

Embryo Germination

Doubled Haploid Production

- Colchicine treatment: Colchicine prevents cell division by inactivating the spindle mechanism. It doesn't affect chromosome replication, but does prolong the time for mitosis.
- Cells at meristematic stage are sensitive to the treatment; therefore, a mixture of haploid and doubled haploid will be obtained.

Normal versus Cochicine Mitosis

Telophase

Anaphase

Metaphase

Prophase

Doubled No.

"Ski-pairs"

No spindle c-pairs

Colchicine Treatment

- Colchicine solution: 1g colchicine powder (1%), 20 ml dimethylsulphoxide (DMSO), and 10 drop of Tween 20 per liter
- Post treatment after vernalization
 - take more time but may save more haploid plants
 - vernalize green plants right after regeneration
 - transfer haploid plants to vermiculite after 6-8 weeks
 - treat them with colchicine solution when plants become healthy

Vernalization of Haploid

Colchicine Treatment

- Colchicine solution: 1g colchicine powder (1%), 20 ml dimethylsulphoxide (DMSO), and 10 drop of Tween 20 per liter
- Direct treatment
 - save time but may lose some haploid plants
- Post treatment after vernalization
 - take more time but may save more haploid plants
 - vernalize green plants right after regeneration
 - transfer haploid plants to vermiculite after 6-8 weeks
 - treat them with colchicine solution when plants become healthy

Before Colchcine Treatment

After Colchicine Treatment

Doubled Haploid Production

- Temperature
- Moisture
- Light
- Nutrition
- Seeds production

Factors?

- Pre-hybridization
- Genotype difference
- Pre-cold treatment
- Apply favorable condition

Pre-hybridization

- F₁ from winter x winter crosses
 - Grow the first set of corn four weeks after winter wheat is put into vernalization chamber
- F₁ from spring x spring or winter x spring crosses
 - Grow the first set of corn two weeks after planting wheat
- Growing conditions: 80-87°F with 16 hrs photo period provided by high intensity lights in greenhouse
- Grow 40 to 60 F₁ seeds to get 200 to 300 doubled fertile haploid (1-2 fertile green plants per emasculated head)

Table 1. Haploid production by wheat x maize hybridization in 12 wheat F1 crosses.									
	Florets	Seeds	Embryos	Green					
Pedigree	Pollinated	Developed	Rescued	Plants		B/A	C/B	D/C	D/A
	Α	В	С	D					
MADISON/ERNIE	814	704	174	60		86.49	24.72	34.48	7.37
PION2684/ERNIE	1151	958	238	121		83.23	24.84	50.84	10.51
ROANE/MADISON	1569	1286	291	135		81.96	22.63	46.39	8.6
ROANE/PION2684	1730	1518	304	176		87.75	20.03	57.89	10.17
SHAAN85-2/MADISON	957	788	136	60		82.34	17.26	44.12	6.27
PION2684/SHAAN85-2	1040	717	130	76		68.94	18.13	58.46	7.31
VR95B717/MADISON	1300	1146	138	54		88.15	12.04	39.13	4.15
VR95B717/PION2684	1300	1015	159	77		78.08	15.67	48.43	5.92
MADISON/W14	612	452	48	12		73.86	10.62	25.00	1.96
PIO N2684/W14	729	587	140	61		80.52	23.85	43.57	8.37
ROANE /W14	616	502	109	63		81.49	21.71	57.80	10.23
FREEDOM/PION 2684	1709	1534	387	126		89.76	25.23	32.56	7.37
Total	13527	11207	2254	1021					
Mean						82.87	20.13	45.21	7.54
Crosses with PION2684	5950	4795	971	511		79.50	20.50	51.84	8.46
Crosses with MADISON	5252	4376	787	321		82.56	17.45	37.82	5.67
DIFFERENCES						-3.06	3.05	14.02	2.79
C.V. (%)						7.93	22.76	5.84	21.71
HERITABILITY						0	0.05	0.93	0.59
LSD (0.05)						8.67	5.82	3.53	2.07

Table 2. Analysis of variance for frequency of embryo germination and green plants							
regeneration.							
Comparison	df	Mean Square					
		D/C	D/A				
Between crosses with PION 2684 and Madison	1	490.980***	19.404*				
Within crosses with either PION 2684 or Madison	4	106.088**	8.352				
Error	4	6.864	2.352				
Total	9						
* p< 0.05, ** p< 0.01, *** p< 0.001							
D/C: The percentage of embryo germination; D/A: The percentage of haploid regeneration							
based on the number of florets emasculated.							

Haploid Production in Twelve Wheat F₁ Populations

- Significant genotype differences were found in F₁ crosses for the efficiency of haploid production, based on the percentage of embryo germination and the percentage of haploid green plants regenerated
- Roane, a scab-tolerant variety, and Pioneer 2684 were the best parents for doubled haploid production

Table 3. Effect of pre-cold treatment for haploid regeneration with wheat x maize hybridization in two wheat F_1 crosses conducted in 1999 and 2000*, Blacksburg, Virginia.

Pedigree	Seeds Excised (No.)		Embryos Rescued (No.)		Haploid Obtained (No.)		Embryo Formation (%)		Haploid Regeneration (%)	
	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000
Madison x W14	452	2202	48	320	12	144	11	15	25	45
Pioneer 2684 x W14	587	1473	140	258	61	144	24	18	44	56
Total	1049	3675	188	578	73	288				
Average							17.5	16.5	34.5	50.5

^{*} All embryos were given pre-cold treatment in 2000 greenhouse test.

Efficiency of Haploid Production

- Fertilization: 80 85%
- Embryo formation: 20 30%
- Embryo germination: 45 60%
- Haploid green plants: 8 15%
- Doubling efficiency: 80 85%
- Doubled haploid plants: 6 10%

Technical Difficulties

- Unusual regeneration (13%)
 - Regeneration without shoot
 - Regeneration with glass or white shoot
 - Regeneration without roots
- Various Loss during colchicine treatment (30%)
- Five fertile plants were obtained per 100 florets pollinated (average 2 doubled haploid plants per pollinated head)

Increase the Efficacy of Wheat x Maize Method

- To increase embryo formation:
 - Select genotype for both wheat F₁ and corn
 - Apply optimal temperature and light regimes for plant growth and reproduction in both wheat and corn
 - Handle spikes carefully during emasculation
 - Optimal timing of 2,4 -D post-treatment
- To increase embryo regeneration:
 - Pre cold treatment of embryos
- To increase the efficacy of colchicine treatment
 - Appropriate tiller stage

Increase the Efficiency of Wheat x Maize Method

- Reduce unusual regeneration (13%)
 - Pre-cold treatment for embryos
- Reduce loss during colchicine treatment and transfer shock (30%)
 - Healthy haploid plants (Colchicine agar medium or liquid medium)
 - Prevent contamination during growth (Vermiculite)
- Increase seed set

Summary of Wheat x Maize System

- Superior to other systems in wheat
- Potential to improve this technique for practical use in breeding programs
- Desirable method to generate genetic and mapping populations
- Economical application for special targeted traits
- Some drawbacks need to be improved

Some Drawbacks with Doubled Haploid Production

GENERAL:

- more expensive: expertise, facilities
- restriction on number of crosses

• SPECIFIC:

- mutagenic treatment
- genotype dependent in anther culture or microspore culture and *bulbosum* method
- need improvement of haploid regeneration frequency